Home

Paragraf Toate Circumstanțe neprevăzute titanium nitride band gap Ce Spălătorie pentru monede practicant

Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic  applications
Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications

Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in  the visible light: AIP Advances: Vol 3, No 6
Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light: AIP Advances: Vol 3, No 6

Band gap E g and nitrogen content of selected samples. | Download Table
Band gap E g and nitrogen content of selected samples. | Download Table

Catalysts | Free Full-Text | Graphitic Carbon Nitride Materials for  Photocatalytic Hydrogen Production via Water Splitting: A Short Review
Catalysts | Free Full-Text | Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review

Calculated electronic band structure of (a) TiN, (b) ZrN along high... |  Download Scientific Diagram
Calculated electronic band structure of (a) TiN, (b) ZrN along high... | Download Scientific Diagram

Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in  the visible light: AIP Advances: Vol 3, No 6
Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light: AIP Advances: Vol 3, No 6

SciELO - Brasil - Incorporation of N in the TiO<sub>2</sub> Lattice  <i>Versus</i> Oxidation of TiN: Influence of the Deposition Method on the Energy  Gap of N-Doped TiO<sub>2</sub> Deposited by Reactive Magnetron Sputtering
SciELO - Brasil - Incorporation of N in the TiO<sub>2</sub> Lattice <i>Versus</i> Oxidation of TiN: Influence of the Deposition Method on the Energy Gap of N-Doped TiO<sub>2</sub> Deposited by Reactive Magnetron Sputtering

Calculated band structure and density of states of TiN. | Download  Scientific Diagram
Calculated band structure and density of states of TiN. | Download Scientific Diagram

First-principles study of phase stability of Ti2N under pressure
First-principles study of phase stability of Ti2N under pressure

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure. | Semantic Scholar
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure. | Semantic Scholar

Discovery of Ternary Silicon Titanium Nitride with Spinel-Type Structure |  Scientific Reports
Discovery of Ternary Silicon Titanium Nitride with Spinel-Type Structure | Scientific Reports

Predicting the structure and stability of titanium oxide electrides | npj  Computational Materials
Predicting the structure and stability of titanium oxide electrides | npj Computational Materials

Materials | Free Full-Text | Optical Properties and Plasmonic Performance  of Titanium Nitride
Materials | Free Full-Text | Optical Properties and Plasmonic Performance of Titanium Nitride

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure | ACS Applied Materials & Interfaces
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure | ACS Applied Materials & Interfaces

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure. | Semantic Scholar
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure. | Semantic Scholar

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure | ACS Applied Materials & Interfaces
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure | ACS Applied Materials & Interfaces

Origin of photoactivity in graphitic carbon nitride and strategies for  enhancement of photocatalytic efficiency: insights from first-principles  comput ... - Physical Chemistry Chemical Physics (RSC Publishing)  DOI:10.1039/C4CP05288A
Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles comput ... - Physical Chemistry Chemical Physics (RSC Publishing) DOI:10.1039/C4CP05288A

Sub-Band Gap Photodetection from the Titanium Nitride/Germanium  Heterostructure | ACS Applied Materials & Interfaces
Sub-Band Gap Photodetection from the Titanium Nitride/Germanium Heterostructure | ACS Applied Materials & Interfaces

Energy band gap of titanium nitride films deposited on a silicon... |  Download Scientific Diagram
Energy band gap of titanium nitride films deposited on a silicon... | Download Scientific Diagram

Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven  Unbiased Biocatalytic CO2 Reduction - Kuk - 2019 - Advanced Energy  Materials - Wiley Online Library
Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven Unbiased Biocatalytic CO2 Reduction - Kuk - 2019 - Advanced Energy Materials - Wiley Online Library

Broadband Hot‐Electron Collection for Solar Water Splitting with Plasmonic Titanium  Nitride - Naldoni - 2017 - Advanced Optical Materials - Wiley Online Library
Broadband Hot‐Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride - Naldoni - 2017 - Advanced Optical Materials - Wiley Online Library

Design of Metastable Tin Titanium Nitride Semiconductor Alloys
Design of Metastable Tin Titanium Nitride Semiconductor Alloys

Impact of surface oxidation on the structural, electronic transport, and  optical properties of two-dimensional titanium nitride (Ti3N2) MXene -  ScienceDirect
Impact of surface oxidation on the structural, electronic transport, and optical properties of two-dimensional titanium nitride (Ti3N2) MXene - ScienceDirect

Epitaxial Nitride Thin Film and Heterostructures: From Hard Coating to  Solid State Energy Conversion | IntechOpen
Epitaxial Nitride Thin Film and Heterostructures: From Hard Coating to Solid State Energy Conversion | IntechOpen

What is a wide-band-gap semiconductor? | Toshiba Electronic Devices &  Storage Corporation | Asia-English
What is a wide-band-gap semiconductor? | Toshiba Electronic Devices & Storage Corporation | Asia-English

Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven  Unbiased Biocatalytic CO2 Reduction - Kuk - 2019 - Advanced Energy  Materials - Wiley Online Library
Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven Unbiased Biocatalytic CO2 Reduction - Kuk - 2019 - Advanced Energy Materials - Wiley Online Library